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Figure 1: A firefighter works during the Creek Fire in Madera County, Cali-
fornia on Sep 7th, 2020. Photographer: Josh Edelson/AFP via Getty Images

ABSTRACT
The occurrence of wildfires in California are frequent and cause a
vast range of damages to the land and society. This project strives to
mitigate the damages from wildfires in California by implementing
machine learning techniques. Previous researches found on the
topic have low accuracy scores, focus on small portions of Califor-
nia, or use various other features to predict wildfires. In project, we
predict the conditions across California that would be most likely
to cause more wildfire by using the Land Surface Temperature,
Normalized Vegetation Index, Thermal Anomalies, and Fire Inci-
dent Record data as input for our models. As a result, the accuracy
score of the each model is as follows: Artificial Neural Network 81%,
Support Vector Machine 93%, K-Nearest Neighbors 87%, Gaussian
Naive Bayes 85%, and Logistic Regression 84%. We found the Sup-
port Vector Machine had the accuracy score of 93% in predicting
the conditions of wildfires across California.
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1 INTRODUCTION
While much research has been conducted on how to predict wild-
fires with great accuracy, wildfires are still a major ongoing issue
due to climate change. Between January and October 2020 wildfires
burned 3.75 million acres, killed 29 people, and destroyed 8,169
structures in California [1]. Thus, a better model is still needed to
predict the creation and spread of wildfires. The goal of this project
is to create a reliable and accurate wildfire prediction model to help
our community in solving this major problem. The project design
begins with preprocessing and inputting the data to the Neural Net-
work (NN), Support Vector Machines (SVM), K-Nearest Neighbors,
Gaussian Naive Bayes (GNB) and Logistic Regression (LR) models.
These models in turn predict the conditions in which wildfire are
likely to occur in California. The final part of the design measures
the quality and accuracy of the prediction.
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The rest of this paper is organized as following: Section 2 dis-
cusses relatedwork; Section 3 presents the framework of the project;
Section 4 discusses the implementation details of the machine learn-
ing models; Section 5 presents the experimental results; and Sec-
tion 6 concludes the project and discusses future work.

2 RELATEDWORK
There has been a sizable amount of work done on the topic already,
with previous groups used different combinations of machine learn-
ing models as well as datasets with varying success.

2.1 Datasets
Three groups had a large influence on the data chosen, Sayad et al.
[12] among others [10] and [14], as the same combination of data
that they used was also chosen for the project: past fire records,
satellite data, andmeteorological data. The Sayad et al. paper was es-
pecially influential in choosing features correlated to fires given the
very accurate results and the overlap of their three chosen features
being common among many other groups who also achieved very
accurate results. The features selected in the Sayad et al. group were:
normalized difference vegetation index, land surface temperature,
and thermal anomalies.

A number of groups used some combination of the same datasets
mentioned above. Zhang et al. [15] used a conjunction of satellite
images and past fire record data. Storer and Green [13] and Liang
et al. [7] both used a combination of past fire record databases
and meteorological data to train their models. Lall and Mathibela
[6] showed promising results using vegetation and environmental
features to train their highly accurate artificial NN. Perumal and
Zyl’s [9] focused on satellite data, specifically the Visible Infrared
Imaging Radiometer Suite (VIIRS) satellite instrument for the area
of South Africa. The authors indicated for future work that MODIS
data would likely improve upon their work, which also played a
role in the decision to use such data.

2.2 Support Vector Machine
Researchers use a combination of meteorological data and the US
forest fire database. Themeteorological data consists of temperature
data as it pertains to weather, humidity, rain and snowfall levels
among other data. The US forest fire database included data such
as geographical coordinates, area affected by fire, and severity, all
in comma separated value (csv) format. The two datasets were
chosen due to their reliability. Researchers demonstrate differences
between some of the most popular machine learning models, and
identifies SVM as having the greatest accuracy in this domain.
Additionally, in this comparison, data fusion and binary and multi-
class classification were used [8].

Researchers use data from Moderate Resolution Imaging Spec-
troradiometer (MODIS) satellite sensors. We haven’t determined
the exact features we will select for our database but we will likely
choose features related to what they used: normalized difference
vegetation index (NDVI or health of crops), land surface temper-
atures (LST), and thermal anomalies. This paper also compares
Neural Networks against SVM, and demonstrated that in their test,
a NN has 98.32% accuracy while an SVM has 97.48% [12].

2.3 Neural Network
In a research paper by Liang et al., three different neural network
models were tested against each other, those being a BPNN model,
a Recurrent NN model, and the LSTMmodel mentioned earlier. The
goal was to determine which of these methods is best to build a pre-
diction model in order to help firefighters and emergency personnel
assess the risk and spread of a fire before it grows too large. The re-
sults of this paper conclude that the LSTM model produced the best
predictions of the three, with an accuracy of 90.9% [7]. Contrary
to this discovery, a conference paper by Lall and Mathibela used a
slight modification of BPNN called the Resilient Back-Propagation
algorithm (RPROP), which resulted in the system’s overall perfor-
mance having an accuracy of 97%, as well as 87% precision and 88%
recall [6].

Both papers proved to have created successful wildfire risk pre-
diction systems, however they also faced similar drawbacks such
as ensuring the model was not overfitting the data. To avoid this,
Liang et al. performed a multi-collinearity test on the data to re-
move factors that were proven to skew the model’s interpretation
rather than benefit it. They also made note that an overall limitation
of the system was due to the modeling data coming from a single
area [7].

The authors of this paper, [13], propose the Particle Swarm Opti-
mization (PSO) algorithm to train a Neural Network. For this, they
use the RMSE(Root Mean Squared Error) to compare the results of
the PSO algorithm with the results of a Backpropagation algorithm.

This paper overlaps with our project in using satellite images
and past fire record data along with CNNs [15]. They created a
model where satellite images of past fire data and a 2D CNN, with 2
convolutional layers with 32 and 64 nodes using Sigmoid and ReLU
activation functions respectively.

3 DESIGN
This project is composed of three major components: preparation,
model building, and quality measurement Fig. 2.

Figure 2: Design Overview

3.1 Data Preparation
The first part of preparation is to gather satellite images from the
Land Processes Distributed Active Archive Center (LP DAAC). The



California Wildfire Prediction: Machine Learning
COMP490 Senior Design Project, California State University, Northridge,

products used for this project are MOD13A1 500m 16 days for
NDVI, MOD11A1 1 km for Land Surface Temperature, VPN14A1
1km for Thermal Anomalies, and MCD64A1 500m for Burn Area.
The next step is to obtain a California forest fire records list from the
California Department of Forestry and Fire Protection (CAL FIRE).
The years analyzed on this project are 2019 and 2020. The final
step of preparation is exploring and cleaning the satellite images
and extracting the quality values from them. Then, apply feature
engineering to the California fire record dataset, and preprocess
all the collected data into a new dataset to be used in the next
component.

3.2 Model Building
For model building, the first step is splitting the data into two
subsets for training and testing. Next, feed the data into training
model, validate the model, and test the model with the testing data
subset. Finally, output the prediction result.

3.2.1 Neural Network. The neural network model used follows a
feed forward network style and makes use of the backpropagation
algorithm. “Feed forward” refers to a non-cyclical style of neural
network, in which the data is passed through multiple layers of
neurons strictly from input to output without looping back. Back-
propagation is used to help identify which neurons contribute to
errors in the output from the network. When errors are encoun-
tered, the weights between connections are modified in an attempt
to guide the network to a more accurate result. [5]

Referring to Fig. 3, the following steps of the neural network
flow can be traced. First, the training set of data is passed into input
neurons and initial weights are chosen. This data is fed through
the network and a linear combination of the inputs and weights is
calculated, which becomes the input for the hidden layers. From
this layer the data passes through a Rectified Linear Unit (ReLU)
activation function and is compared against a threshold value to
determine if that neuron’s output is passed onto the next layer. This
method is repeated between each of the hidden layers. A final linear
combination is again calculated before arriving at the output layer.
Here is where error checking takes place and weights are modified
as needed. Lastly, this entire training process is repeated until the
best fitting weights have been discovered and the model’s accuracy
is maximally improved.

Figure 3: Neural network workflow

3.2.2 Support Vector Machine. Support Vector Machines (SVM)
are commonly used for classification and regression problems. The
main objective of an SVM is to find the optimal hyperplane for the
classification of two classes. An easy way to explain how an SVM
works is by using a 2D space representation of two different classes
linearly separable. The optimal hyperplane is the line passing be-
tween these two classes, creating a maximum margin that serves as
the host of the support vectors. Unfortunately, not all datasets can
be linearly separable; in a multidimensional space, Kernel functions
are used to shape the hyperplane. To find the optimal hyperplane in
a multidimensional space, a Support Vector Machine(SVM) needs
the following components:

• Feature Selection: helps create new features so that the
Kernel function can transform and find boundaries in the
dataset.

• SVM Kernel: functions used to shape the hyperplane in a
multidimensional space.

• Classifier (SVM): finds the optimal hyperplane and the sup-
port vectors that define the maximum margin.

Figure 4: Support Vector Machine

Figure 5: SVM Kernels

3.2.3 SVM Kernel. For the SVM algorithm we choose a kernel, a
map from often single dimensional space to n-dimensional space.
This is done in the hopes that a higher dimensional space will
allow the data to be classified more efficiently. And as previously
mentioned in the section above, being able to find a plane that
will linearly separate the data is an extremely integral part of the
SVM model. For our data and design we found that the following 4
kernels are potential candidates: polynomial, Gaussian, Sigmoid,
and Hyperbolic Tangent. In figure 4 above we can see that for each
given kernel, we have an associated function. And interestingly,
choosing any such kernel will allow us to make predictions based
only on our original feature selections.

We found that the polynomial kernel is often associated with
having highmeasure of accuracy in the realm of of image processing.
The Gaussian kernel is looked at as being more general purpose.
That is to say that it primarily operates without being given prior
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knowledge of input data. Moreover, the remaining two kernels,
Sigmoid and Hyerbolic Tangent, form an excellent pair with neural
networks. What we hope to accomplish by selecting a kernel model,
is to choose one such model that will help us deliver the most
accurate and reliable results.

3.2.4 Hyper-parameters and tuning. It would be to our detriment
to run the SVM model out of the box and disregard its configu-
ration. Moreover, in the last section we mentioned the notion of
kernels, but we left out other key aspects. Those key ideas are hyper-
parameters and the process of tuning them. Hyper-parameters are
strictly kernel parameters that focus on either the soft margin cost
or the cost of miss-classification, C, the curvature or influence of a
single training example extends, 𝛾 , and the degree, poly. By default
Scikit-Learn (Sklearn) uses the values of: C = 1, 𝛾 = scale, and poly
= 3 for each appropriate kernel. In our case we mainly want to look
at the values of C and 𝛾 . Further, for each of these parameters we
would like to find the best combination such that our model has
high accuracy while also maintaining an optimal variance and bias.
As such, after finding an acceptable kernel, we then need to perform
some kind of parameter tuning. One of the easiest yet brute force
ways to do this is via a technique known as a grid search. In a grid
search we take a grid or list of parameters and test them with a
given kernel. The combination that provides the best results will
ultimately be returned as the optimal parameter set. And so with
this in mind we look to find the best combinations of parameters
for our chosen kernel.

3.2.5 K-Nearest Neighbors. K-Nearest Neighbors is known as one
of the simplest non-parametric classifiers, and a popular algorithm
for binary classification in high dimensional problems[11]. K is the
number of nearest neighbors and is the core deciding factor. K is
generally an odd number if the number of classes is two. To find the
closest similar points, the key is finding the distance between points
using distance measures such as Euclidean distance, Hamming
distance, Manhattan distance and Minkowski distance. Fig. 6 shows
how the algorithm works [3]. In this project, KNN is being used
from Scikit-learn (default setting) as a starting point, and will find
an optimal k value based on the size and other factors of the data.

3.2.6 Logistic Regression. Logistic Regression is another simple
statistical method that is commonly used in machine learning for
binary classification. Its basic fundamental concepts are also con-
structive in deep learning. It uses a log of odds as the dependent
variable. Logistic Regression predicts the probability of occurrence
of a binary event utilizing a logit function.

Properties of Logistic Regression:
• The dependent variable in logistic regression follows Bernoulli
Distribution.

• Estimation is done through maximum likelihood.
• No R Square, Model fitness is calculated through Concor-
dance, KS-Statistics.

Refering to Fig. 7 the sigmoid function, also called logistic function
gives an ‘S’ shaped curve that can take any real-valued number and
map it into a value between 0 and 1. If the curve goes to positive
infinity, y predicted will become 1, and if the curve goes to negative
infinity, y predicted will become 0. If the output of the sigmoid
function is more than 0.5, we can classify the outcome as 1 or YES,

Figure 6: KNN Classification

and if it is less than 0.5, we can classify it as 0 or NO [4]. In this
project, LR is being used from Scikit-learn (default setting) as a
starting point, and will apply hyper-parameter tuning to improve
the model.

𝑓 (𝑥) = 1/1 + 𝑒−𝑥

Figure 7: Logistic Function

3.2.7 Gaussian Naive Bayes. Naive Bayes is a statistical classifi-
cation technique based on Bayes Theorem. Naive Bayes classifier
is the fast, accurate and reliable algorithm. Naive Bayes classifiers
have high accuracy and speed on large datasets. Gaussian Naive
Bayes (GaussianNB) implements the Gaussian Naive Bayes algo-
rithm for classification. The likelihood of the features is assumed
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to be Gaussian [2]:

𝑃 (𝑥𝑖 | 𝑦) =
1√
2𝜋𝜎2𝑦

exp

(
−
(𝑥𝑖 − 𝜇𝑦)2

2𝜎2𝑦

)
In this project, GaussianNB is being used from Scikit-learn (default
setting) as a starting point, and will be changing parameters to
improve the performance of the model.

3.3 Quality Measurement
The Quality Measurement phase is the last phase in the design and
the work flow can be observed in Fig. 8. In this phase, we will be
collecting the prediction results from our trained models, apply-
ing evaluation methods, comparing and finalizing our results. The
result can be measured in various ways such as classification met-
rics, K-fold cross-validation, confusion matrix, Receiver Operating
Characteristic (ROC) Curves, and Area Under the Curves (AUC).

Basic Terminology:
• Accuracy: Overall, how often is the classifier correct?
• Precision: When a positive value is predicted, how often is
the prediction correct?

• Recall/Sensitivity: When the actual value is positive, how
often is the prediction correct?

• F-Measure/F1 score: Calculates the harmonic mean of the
precision and recall (harmonic mean because the precision
and recall are rates).

• True Positive: Correctly predicted that there is A Fire
• True Negative: Correctly predicted that there is NO Fire
• False Positive: Incorrectly predicted that there is A Fire (a
"Type I error" - falsely predict positive)

• False Negative: Incorrectly predicted that there is NO Fire
(a Type II error" - falsely predict negative)

The statistical models calculate the average distance of error be-
tween the predicted and the actual outcome. After the accuracy has
been calculated, we will compare the results.

The accuracy of each model be compared to each other as well
as the scores from previous works to see if adjustments are needed.
If adjustments should be made, we will go back into the Data Prepa-
ration Phase or more specifically, the Data Preprocessing Phase,
as shown in Figure 8, to make adjustments to parameters. The ad-
justments will be making are either to change the weight of the
parameters or to replace them. After we have reached the desired
results, we will finalize them by writing our report on our process
and findings.

3.3.1 Experiments. Multiple datasets were created to analyze the
California region, one at the state level, one at the county level,
and another at the county level that focuses on the fire season of
the collected years. The state level dataset treats the entirety of
CA as one region for the purposes of averaging input conditions
and interpreting the fire incident record into the target class of
fire/no_fire. The county level dataset consists of a subset of CA,
specifically 44 out of the 58 counties that had reported forest fires
in the years 2019-2020, according to the Cal Fire incident record.
This second dataset also treats each of the 44 counties as an indi-
vidual region using it’s county ID, which allows for more localized
classification of the input data and the target class (fire/no_fire)

Figure 8: Quality Measurement Design which shows the
work flow for this phase

from the fire incident record, which specifies regions on fire down
to the county level. The last experiment selects a subset of the pre-
vious county level dataset, specifically the months of May through
November, where the majority of fires were reported according to
the fire incident record. All three datasets will be tested with all
the chosen models and have various techniques applied to them
such as normalisation, dropping of outliers, and resampling of the
data. All datasets were then validated by comparing forecasting
results from the input features to the fire incident record from Cal
Fire. The full subset of CA counties used in the last two datasets
are: Siskiyou, Merced, San Joaquin, Alameda, Contra Costa, Shasta,
San Luis Obispo, Monterey, Riverside, San Diego, Ventura, Stanis-
laus, Santa Clara, Madera, Calaveras, El Dorado, Sacramento, San
Bernardino, Lake, Tuolumne, Mendocino, Solano, Colusa, San Ben-
ito, Santa Cruz, Tehama, Butte, Amador, Napa, Fresno, Sonoma, San
Mateo, Neveda, Placer, Mariposa, Tulare, Lassen, Kern, Los Angeles,
Glenn, Yolo, Plumas, Yuba, Orange.

4 IMPLEMENTATION
Implementation section will include steps in data pre-processing,
parameters used in models and evaluation methods used.

4.1 Data Preprocessing
Since multiple similar datasets were collected, the following steps
will describe the process of accessing and processing the state level
dataset with mentions of the county specific steps when they differ.
A general note for the preprocessing sections: the county level data
uses the same sattelite images used in the state level processing,
except there is an extra step of separating the CA images into
county images using geojson geometries for a masking technique
described in more detail in the data clipping step.

4.1.1 Data Collection. To prepare the dataset for this project, the
first step is accessing the Remote Sensing Data from the Land Pro-
cesses Distributed Active Archive Center (LP DAAC) and California
fire incident record from Cal Fire, as referenced in Fig. 9. For the
LP DAAC data, the data extract tool AppEEAR 1 was used. Once
inside the AppEEAR tool, select Extract,area sample, and then start
new request. On the extract page, select the boundaries of Califor-
nia via shape file or geojson, adjust the time frame to be between
1/1/2019 to 12/31/2020, select the target layer, select GeoTiff file for-
mat, and select geographic projection. The target layers used were:
1https://lpdaac.usgs.gov/tools/appeears/



COMP490 Senior Design Project, California State University, Northridge,
Pham, Shin, et al.

MOD13A1_006_500m_16_days_NDVI,MOD11A1_006_LST_Day_1km,
VPN14A1_001_FireMask, andMCD64A1_006_Burn_Date for NDVI,
LST, TA, and burn area, respectively. One can find more details of all
of the products on a GitHub repository set up for the preprocessing
steps that includes all files used for processing the datasets on state
and county levels 2. Next, download CA fire incident data from the
Cal Fire website 3.

Figure 9: Data Sources

4.1.2 Data Cleaning. Data cleaning consists of correcting imper-
fections that result from satellite imaging equipment caused by
various occurrences such as cloud cover, satellite instrument mal-
functions, or by the sources that contain and distribute the images.
MODIS data is already processed with respect to geo-referencing,
so the focus of this section is to weather related imperfections.
The data was cleaned by masking the raw images by the corre-
sponding quality lookup table (LUT) that was acquired from the
LP DAAC website. LP DAAC has great documentation regarding
masking, visualizing, and plotting appears output 4. In essence, all
of the low-quality data or data with meteorological interference are
dropped from the images using the masking technique. After the
data is cleaned, the values are averaged across the specific region,
either state or county, and stored with the corresponding date. The
following subsection includes the steps to follow for cleaning and
masking a GeoTIFF file.

2https://github.com/dmw01/Beat-the-Heat-Data-Preprocessing
3https://www.fire.ca.gov/incidents/
4https://lpdaac.usgs.gov/resources/e-learning/masking-visualizing-and-plotting-
appeears-output-geotiff-time-series-python/

Figure 10: California NDVI Data Visualization

4.1.3 Data Clipping. Data clipping or sub-setting of the images
was done to extract only the parts of the GeoTIFF files that over-
lapped the burn area dataset. The different Libraries used in this
step include:

• Pandas Library to open and export CSV files.
• GeoPandas Library to read the GoeJson California county
shapefile.

• Geospatial Data Abstraction Library (GDAL) to open and
read the layers of the GeoTIFF files.

• Rasterio Library to mask a GeoTIFF file by the shapefile
• NumPy Library to mask arrays.

The steps to mask the NDVI GeoTIFF file by its Quality data are
the following:

• Open the NDVI tif file to be analyzed.
• Open the Quality tif file associated with the product.
• Open the lookup table containing the quality values of the
product.

• Read the raster band of the product as an array.
• Scale the product by its scale factor.
• Obtain an array of good quality values by masking the scaled
product by its quality data.

The exact process is applied for the rest of the products: LST, TA,
and BA. At the county level, first, the Geotiff file is masked by the
shapefile of the county selected. Then, the same process of masking
by the quality data is applied.

4.1.4 Data Interpolation. Next step is to interpolate the NDVI, LST,
and TA datasets so they have the same temporal frequency. This
step is only necessary for the NDVI dataset because it is in a 16 day
temporality and the other two are daily. Linear interpolation from
the Pandas library was used for the state level data.

4.1.5 Target Class from Fire Incident Record. Now the fire record
is to be processed and used to create the target class column of
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fire/no_fire. The Cal Fire .csv dataset contains a number of columns
of interest: type of fire, start and end dates, and the county of the
fire. First, the years of interest are isolated to only include 2019-2020,
followed by transforming start and end dates into a list of all the
days in between. For the dataset that is categorized at the county
level, there is an extra step of separating fires that had multiple
counties into separate counties, as well as keeping track of the
county ID during the previous process. The dataset that looks at
the state as a whole unit, labels any fire in the fire record as a fire
for all of California. After creating this new dataframe of the fire
record with the columns of: date (daily), fire/no, and county ID if
appliciable, the fire record dataframes data’s dates are then merged
with one of the datasets (NDVI, LST, or TA), specifically looking at
the date column to create a new column of fire/no_fire. If counties
are involved, an extra condion is used to see if a given county is
on fire with respect to the day in question. The remaining two
datasets are then merged with whichever was used first, followed
by removal of the date and county ID (if applicable) to complete the
dataset with the following columns: NDVI, LST, TA, fire/no_fire,
and county ID, if applicable. An example of our final state level
dataset can be seen in Fig. 11.

Figure 11: Final Dataset Example

4.2 Applying Models and Evaluation
All models used train/test split as 80 percents for training and 20
percent for testing. Evaluate models using scikit-learn classification
metrics that return (precision, recall, f1-score, support, and accuracy
score), and confusion matrix.

• NN: The neural network model is implemented using the
MLPClassifier in the Scikit-Learn (Sklearn) library. MLPClas-
sifier is a multi-layered perceptron, which is another term
for a neural network with multiple hidden layers. The net-
work was trained and tested using varying hidden layer and
neuron amounts but performed the best with 12 hidden lay-
ers and 12 neurons per layer. Model parameters: (solver=
’lbfgs’, alpha= 0, activation= ’relu’, hidden_layer_sizes= 12,
random_state= 1). Sklearn’s KFold method was used during
model training and testing, with an average taken out of 7
folds.

• SVM: Asmentioned prior, the Support VectorMachine (SVM)
model is highly dependent on a whole suite of configura-
tions. We namely, needed to find what kernel configuration
and hyper-parameters would yield us the best results. After
testing and running several grid searchers, we found the
following to give us the best results: (kernel = ’rbf’, C = 9.9,
gamma = 1). All other model parameters were left as default.
For further clarification of the SVM’s parameters one may
visit sklearn.svm.SVM

• KNN: Parameters used (n_neighbors= 8, weight= ’uniform’,
algorithm= ’auto’, leaf_size= 30, p= 3, metric= ’minkowski’,
metric_params= None, n_jobs= None). Further explanation
on each parameter can be found at sklearn.neighbors. KNeigh-
borsClassifier.

• GaussainNB: Parameters used( priors=None, var_smoothing=
1e-09). Further explanation on each parameter can be found
at sklearn.naive_bayes.GaussianNB.

• LR: Parameters used (penalty= ’l2’, dual= False, tol= 1e-4,C=
1, fit_intercept= True, intercept_scaling= 1, class_weight=
None, random_state= None, solver= ’lbfgs’, max_iter= 100,
multi_class= ’auto’, verbose= 0, warm_start= False, n_jobs=
None, l1_ratio= None). Further explanation on each parame-
ter can be found at sklearn.linear_model.LogisticRegression.

5 RESULTS
Fig. 12 shows the result of all models applied on the data across CA.
Which is mean the data include all parts that might not have fire
at the same time. This dataset is content 731 rows and 4 columns
including the 292 Fires and 431 No_Fires.The size of the dataset is
small for NN so the result for NN is not as high as the other models.

Figure 12: Result on data across CA

Fig. 13 below depicts the results of our Support Vector Machine
model on our custom CA dataset. Here we can see that we our
values for: true negative, false positive, false negative, and true
positive. In addition, in the classification repository the values for
precision, recall, f1-score, and support are displayed.

Fig. 14 shows the result of all models applied on the data of 44
counties CA that had fires in the past two years. Even though this
result is very high accuracy score but it might be too biased due to
the imbalance class in the data. There were 1370 Fires and 41028
No_Fires. The ratio is approximately 1:30 and is considered a severe
imbalance. This imbalance could lead the model to predict on only
No_Fire most of the time.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Figure 13: Confusionmatrix and classification report for our
SVM model

Figure 14: Result on data of 44 counties in CA

6 CONCLUSION AND FUTUREWORK
The work outlined acts as a small step in the direction of combating
a force as unpredictable and devastating as forest fires. This paper
is not the first with the goal of fighting forest fires from behind the
front lines, and surely far from the last, however the approaches
taken provide promising results for the field of machine learning
and remote sensing to tackle very ambiguous problems that have
long caused ruin for eons. The work highlights the use case of fore-
casting areas that a fire may occur in, given highly influential, and
widely available factors: NDVI, LST, and TA combined with a fire
incident record. The models used give highly accurate predictions
of regions that are likey to be on fire with the most notable being
87% for KNN and 93% for SVM for the state level dataset, as well as
98% for SVM and 97% for NN, GNB, and LG models for the county
level dataset.

There were a few directions that we did not have time to explore
but may yield promising results.

One step that could increase the accuracy of our fire indicator
would be to use burn area as a fire indicator instead of the fire
incident record. While burn area doesn’t tell which areas were
burned with 100% accuracy, it has very fine spatial and temporal
resolution down to the pixel and daily levels, respectively. The fire
record on the other hand does not tell the location of the fire, only
the county, acres burned, and dates the fire is active. This introduces
uncertainty because the finest spatial resolution of fires than can
be extracted from this, is the county. Burn area on the other hand
labels fires down to the daily temporally and 500m grid pixels. This
can be used similar to how burn area was used to extract all days
that had fire conditions for a given month, except this masking
process would extract an area sample for all the areas that had fires
for a given day, and flag that data’s target class as fire. To do this
with daily temporality, the monthly burn area data would need to
be masked into daily images, using the ’Burn Date’ values which
represent calendar days (1-366).

Once we achieve the accuracy result desired, the next step will be
implementing the project to real time data. This can be done by us-
ing NASA API to get the most recent data from the satellite images.
Then extracting the values of the satellite images and preparing
the data to run the model with. Running the model with the most
recent data will result in a prediction if there is going to be a fire
or not. Implementing reinforcement learning will make sure that
the data accuracy is kept high, by looking at the fire record data
and seeing if there was a fire as predicted by the model. In case of a
false prediction, a method will change the parameters of the model
and retrain with the most recent 2 years of data.
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